Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
JPMA-Journal of Pakistan Medical Association. 2015; 65 (2): 206-212
in English | IMEMR | ID: emr-153765

ABSTRACT

Charcot-Marie-Tooth [CMT] disease is a well-known neural or spinal type of muscular atrophy. It is the most familiar disease within a group of conditions called Hereditary Motor and Sensory Neuropathies [HMSN]. The disease was discovered by three scientists several years ago. Several genes are involved as the causative agents for the disease. Hundreds of causative mutations have been found and research work for the identification of a novel locus and for the treatment of CMT1A is going on. This review article was planned to gather information on CMT disease and updates on its treatment. National Center for Biotechnology Information [NCBI] and PubMed were searched for data retrieval. Molgen database, which is the exclusive site for CMT mutation, was the other source of articles. Different aspects of the CMT disease were compared. Advancements in the finding of the causative gene, discovery of the novel Loci are the current issues in this regard. CMT disease is incurable, but researchers are trying to get some benefits from different natural compounds and several therapeutic agents. Various groups are working on the treatment projects of CMT1A. Major step forward in CMT research was taken in 2004 when ascorbic acid was used for transgenic mice treatment. Gene therapy for constant neurotrophin-3 [NT-3] delivery by secretion by muscle cells for the CMT1A is also one of the possible treatments under trial


Subject(s)
Humans , Mutation , Genetic Therapy , Neurotrophin 3 , Laboratories , Ascorbic Acid
2.
The Korean Journal of Physiology and Pharmacology ; : 297-305, 2014.
Article in English | WPRIM | ID: wpr-728465

ABSTRACT

Flavonoids have an ability to suppress various ion channels. We determined whether one of flavonoids, cyanidin-3-glucoside, affects adenosine 5'-triphosphate (ATP)-induced calcium signaling using digital imaging methods for intracellular free Ca2+ concentration ([Ca2+]i), reactive oxygen species (ROS) and mitochondrial membrane potential in PC12 cells. Treatment with ATP (100microM) for 90 sec induced [Ca2+]i increases in PC12 cells. Pretreatment with cyanidin-3-glucoside (1micro g/ml to 100microg/ml) for 30 min inhibited the ATP-induced [Ca2+]i increases in a concentration-dependent manner (IC50=15.3microg/ml). Pretreatment with cyanidin-3-glucoside (15microg/ml) for 30 min significantly inhibited the ATP-induced [Ca2+]i responses following removal of extracellular Ca2+ or depletion of intracellular [Ca2+]i stores. Cyanidin-3-glucoside also significantly inhibited the relatively specific P2X2 receptor agonist 2-MeSATP-induced [Ca2+]i responses. Cyanidin-3-glucoside significantly inhibited the thapsigargin or ATP-induced store-operated calcium entry. Cyanidin-3-glucoside significantly inhibited the ATP-induced [Ca2+]i responses in the presence of nimodipine and omega-conotoxin. Cyanidin-3-glucoside also significantly inhibited KCl (50 mM)-induced [Ca2+]i increases. Cyanidin-3-glucoside significantly inhibited ATP-induced mitochondrial depolarization. The intracellular Ca2+ chelator BAPTA-AM or the mitochondrial Ca2+ uniporter inhibitor RU360 blocked the ATP-induced mitochondrial depolarization in the presence of cyanidin-3-glucoside. Cyanidin-3-glucoside blocked ATP-induced formation of ROS. BAPTA-AM further decreased the formation of ROS in the presence of cyanidin-3-glucoside. All these results suggest that cyanidin-3-glucoside inhibits ATP-induced calcium signaling in PC12 cells by inhibiting multiple pathways which are the influx of extracellular Ca2+ through the nimodipine and omega-conotoxin-sensitive and -insensitive pathways and the release of Ca2+ from intracellular stores. In addition, cyanidin-3-glucoside inhibits ATP-induced formation of ROS by inhibiting Ca2+-induced mitochondrial depolarization.


Subject(s)
Animals , Adenosine , Adenosine Triphosphate , Calcium , Calcium Signaling , Flavonoids , Ion Channels , Ion Transport , Membrane Potential, Mitochondrial , Nimodipine , omega-Conotoxins , PC12 Cells , Reactive Oxygen Species , Receptors, Purinergic P2X2 , Thapsigargin
SELECTION OF CITATIONS
SEARCH DETAIL